skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vesperini, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The formation of compact high-redshift star-forming clumps, along with the physical processes driving their evolution and their potential connection to present-day globular clusters (GCs), are key open questions in studies of galaxy formation. In this work, we aim to shed light on these aspects using the SImulating the Environment where Globular clusters Emerged (SIEGE) project, a suite of cosmological zoom-in simulations with subparsec resolution that is specifically designed to investigate the physical conditions behind the origin of compact stellar systems in high-redshift environments. The simulations analyzed in this study are focused on a dwarf galaxy with a virial mass of a few 109Matz= 6.14, where the spatial resolution reaches 0.3 pc h−1. Individual stars are formed directly by sampling the initial mass function, with a 100% star formation efficiency. This setup is designed to explore the impact of a high star formation efficiency under high-redshift conditions. The simulation reveals the emergence of numerous stellar clumps with sizes of 1–3 pc, stellar surface densities up to almost 104Mpc−2, and masses predominantly spanning 103Mto several 104M, with a few reaching 105Mand up to 106M. All clumps form during intense, short bursts of star formation lasting less than a megayear, without noticeable signs of second peaks of star formation or accretion, often with negligible dark matter content (i.e., dark-to-stellar mass ratios below 1 within three times their effective radii). We measured a clear correlation between mass and size, with a clump mass function described by a power law with a slope of −2. Star formation conditions in the simulation reveal a behaviour that is similar to that of a feedback-free starburst scenario, where dense clumps form due to inefficient stellar feedback over small timescales. Notably, some clumps exhibit properties that closely resemble those of present-day globular clusters, highlighting their potential evolutionary connection. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Star clusters stand at the crossroads between galaxies and single stars. Resolving the formation of star clusters in cosmological simulations represents an ambitious and challenging goal, since modelling their internal properties requires very high resolution. This paper is the third of a series within the SImulating the Environment where Globular clusters Emerged (SIEGE) project, where we conduct zoom-in cosmological simulations with sub-parsec resolution that include the feedback of individual stars, aimed to model the formation of star clusters in high-redshift proto-galaxies. We investigate the role of three fundamental quantities in shaping the intrinsic properties of star clusters, i.e., (i) pre-supernova stellar feedback (continuous or instantaneous ejection of mass and energy through stellar winds); (ii) star formation efficiency, defined as the fraction of gas converted into stars per freefall time, for which we test 2 different values (ϵff= 0.1 and 1), and (iii) stellar initial mass function (IMF, standard vs top-heavy). All our simulations are run down toz= 10.5, which is sufficient for investigating some structural properties of the emerging clumps and clusters. Among the analysed quantities, the gas properties are primarily sensitive to the feedback prescriptions. A gentle and continuous feedback from stellar winds originates a complex, filamentary cold gas distribution, opposite to explosive feedback, causing smoother clumps. The prescription for a continuous, low-intensity feedback, along with the adoption of ϵff= 1, also produces star clusters with maximum stellar density values up to 104Mʘpc−2, in good agreement with the surface density-size relation observed in local young star clusters (YSCs). Therefore, a realistic stellar wind description and a high star formation effiency are the key ingredients that allow us to achieve realistic star clusters characterised by properties comparable to those of local YSCs. In contrast, the other models produce too diffuse clusters, in particular the one with a top-heavy IMF. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Aims. Globular clusters (GCs) are known to host distinct stellar populations, characterized by different chemical compositions. Despite extensive research, the origin of these populations remains elusive. According to many formation scenarios, the second population (2P) originated within a compact and denser region embedded in a more extended first population (1P) system. As a result, 2P binaries should be disrupted at a larger rate than 1P binaries. For this reason, binary systems offer valuable insight into the environments in which these stellar populations formed and evolved. Methods. We analyzed the fraction of binaries among 1P and 2P M dwarfs in the outer region of NGC 288 using Hubble Space Telescope data. We combined our results with those from a previous work, where we inferred the fraction of 1P and 2P binaries in the cluster center. Results. In the outer region, we find a predominance of 1P binaries (97−3+1%) compared to 2P binaries (3 ± 1%) corresponding to an incidence of binaries with a mass ratio (i.e., the ratio between the masses of the primary and secondary star) greater than 0.5 equal to 6.4 ± 1.7% for the 1P and 0.3 ± 0.2% for the 2P. These binary fractions and incidences differ from those found in the cluster’s central region, where the 1P and 2P exhibit similar binary incidences and fractions. These results are in general agreement with the predictions of simulations following the evolution of binary stars in multiple-population GCs, starting with a dense 2P subsystem concentrated in the central regions of a 1P system. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. We explored the evolution of various properties of multiple-population globular clusters (GCs) for a broad range of initial conditions. We simulated over 200 GC models using theMOCCAMonte Carlo code and find that the present-day properties of core and half-light radii and the ratio of the number of second-generation (SG) stars to the total number of stars (NSG/NTOT) of these models cover the observed values of these quantities for Milky Way GCs. Starting with a relatively small value of the SG fraction (NSG/NTOT~ 0.25) and a SG system concentrated in the inner regions of the cluster, we find, in agreement with previous studies, that systems in which the first-generation (FG) is initially tidally filling or slightly tidally underfilling best reproduce the observed ratios of NSG/NTOTand have values of the core and half-light radii typical of those of many Galactic globular clusters. Models in which the FG is initially tidally underfilling retain values of NSG/NTOTclose to their initial values. These simulations expand previous investigations and serve to further constrain the viable range of initial parameters and better understand their influence on present-day GC properties. The results of this investigation also provide the basis for our future survey aimed at building specific models to reproduce the observed trends (or lack thereof) between the properties of multiple stellar populations and other cluster properties. 
    more » « less
  5. Recent work withJWSThas demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data fromJWST, HST, Gaia, and ground-based telescopes. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to ∼10Rh. Our findings indicate that while first population (1G) stars’ motions are isotropic, second population (2G) stars’ motions are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2GAand 2GB, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (∼2–4Rh), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Moreover, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population. Finally, we found that 1G stars exhibit a higher skewness in their tangential proper motions than 2G stars, providing additional evidence of kinematic differences between the two stellar generations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  6. We present the first 3D kinematic analysis of multiple stellar populations (MPs) in a representative sample of 16 Galactic globular clusters (GCs). For each GC in the sample, we studied the MP line-of-sight, plane-of-the-sky and 3D rotation, and velocity distribution anisotropy. The differences between first-population (FP) and second-population (SP) kinematic patterns were constrained by means of parameters specifically defined to provide a global measure of the relevant physical quantities and to enable a meaningful comparison among different clusters. Our analysis provides the first observational description of the MP kinematic properties and of the path they follow during their long-term dynamical evolution. In particular, we find evidence of differences between the rotation of MPs along all velocity components with the SP preferentially rotating faster than the FP. The difference between the rotation strength of MPs is anticorrelated with the cluster dynamical age. We also observe that FPs are characterized by isotropic velocity distributions at any dynamical age probed by our sample. On the contrary, the velocity distribution of SP stars is found to be radially anisotropic in dynamically young clusters and isotropic at later evolutionary stages. The comparison with a set of numerical simulations shows that these observational results are consistent with the long-term evolution of clusters forming with an initially more centrally concentrated and more rapidly rotating SP subsystem. We discuss the possible implications these findings have on our understanding of MP formation and early evolution. 
    more » « less
  7. Almost all globular clusters (GCs) contain multiple stellar populations consisting of stars with varying helium and light-element abundances. These populations include first-population stars, which exhibit similar chemical compositions as halo-field stars with comparable [Fe/H], and second-population stars, characterized by higher helium and nitrogen abundances along with reduced levels of oxygen and carbon. Nowadays, one of the most intriguing open questions about GCs pertains to the formation and evolution of their multiple populations. Recent works based on N-body simulations of GCs show that the fractions and characteristics of binary stars can serve as dynamic indicators of the formation period of multiple-population GCs and their subsequent dynamical evolution. Nevertheless, the incidence of binaries among multiple populations is still poorly studied. Moreover, the few available observational studies focus only on the bright stars of a few GCs. We used deep images of the GC 47 Tucanae collected with theJames Webband theHubblespace telescopes to investigate the incidence of binaries among multiple populations of M dwarfs and bright main- sequence stars. To reach this objective, we used UV, optical, and near-infrared filters to construct photometric diagrams that allowed us to disentangle binary systems and multiple populations. Moreover, we compared these observations with a large sample of simulated binaries. In the cluster central regions, the incidence of binaries among first-population stars is only slightly higher than that of second- population stars. In contrast, in the external regions, the majority of the studied binaries (≳85%) are composed of first-population stars. These results are consistent with the GC formation scenarios in which the second-population stars originate in the cluster’s central region, forming a compact and dense stellar group within a more extended system of first-population stars. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  8. Thanks to its exceptional near-infrared photometry, JWST can effectively contribute to the discovery, characterisation, and understanding of multiple stellar populations in globular clusters, especially at low masses where theHubbleSpace Telescope (HST) faces limitations. This paper continues the efforts of the JWST GO-1979 programme in exploring the faintest members of the globular cluster NGC 6397. In this work, we show that the combination of HST and JWST data allows us to identify two groups of MS stars: MSa, the first-generation group, and MSb, the second-generation group. We measured the ratio between the two groups and combined it with measurements from the literature focused on more central fields and more massive stars compared to our study. Our findings suggest that the MSa and MSb stars are present in a ≈30−70 ratio regardless of the distance from the centre of the cluster and the mass of the stars used so far. However, considering the limited areal coverage of our study, a more comprehensive spatial analysis is necessary to definitively confirm complete spatial mixing. 
    more » « less
  9. We explore the possibility of theN-rich young proto-galaxy GN-z11, recently observed atz = 10.6 by JWST, being the result of the formation of second generation stars from pristine gas and asymptotic giant branch (AGB) ejecta in a massive globular cluster or nuclear star cluster. We show that a second generation forming out of gas polluted by the ejecta of massive AGB stars and mixed with gas of a standard composition accounts for the unusually large N/O in the GN-z11 spectrum. The timing of the evolution of massive (4–7.5 M) AGBs also provides a favorable environment for the growth of a central stellar mass black hole to the AGN stage observed in GN-z11. According to our model, the progenitor system was born when the age of the Universe was ≃260 − 380 Myr, well within the bounds of the pre-reionization epoch. 
    more » « less
  10. ABSTRACT By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10−24 g cm−3) external gas density, a disc of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density ($$10^{-23}\, {\rm g\ cm^{-3}}$$), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs. 
    more » « less